Logo del repository
  1. Home
 
Opzioni

Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation

Coelho I.
•
CORSATO, CHIARA
•
OBERSNEL, Franco
•
OMARI, PIERPAOLO
2012
  • journal article

Periodico
ADVANCED NONLINEAR STUDIES
Abstract
We discuss existence and multiplicity of positive solutions of the Dirichlet problem for the quasilinear ordinary differential equation \begin{equation*} -\Big( u'/{ \sqrt{1-{u'}^2}}\Big)' = f(t,u). \end{equation*} Depending on the behaviour of $f=f(t,s)$ near $s=0$, we prove the existence of either one, or two, or three, or infinitely many positive solutions. In general, the positivity of $f$ is not required. All results are obtained by reduction to an equivalent non-singular problem to which variational or topological methods apply in a classical fashion.
WOS
WOS:000306615300010
Archivio
http://hdl.handle.net/11368/2507945
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84867757135
Diritti
metadata only access
Soggetti
  • Quasilinear ordinary...

  • Minkowski-curvature

  • Dirichlet boundary co...

  • positive solution

  • existence

  • multiplicity

  • critical point theory...

  • bifurcation method

  • lower and upper solut...

Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback