Logo del repository
  1. Home
 
Opzioni

A point mutation in the pore region alters gating, Ca2+ blockage, and permeation of olfactory cyclic nucleotide-gated channels

GAVAZZO P.
•
PICCO C.
•
EISMANN E.
altro
Menini, Anna
2000
  • journal article

Periodico
JOURNAL OF GENERAL PHYSIOLOGY
Abstract
Upon stimulation by odorants, Ca2+ and Na+ enter the cilia of olfactory sensory neurons through channels directly gated by cAMP. Cyclic nucleotide-gated channels have been found in a variety of cells and extensively investigated in the past few years. Glutamate residues at position 363 of the alpha subunit of the bovine retinal rod channel have previously been shown to constitute a cation-binding site important for blockage by external divalent cations and to control single-channel properties. It has therefore been assumed, but not proven, that glutamate residues at the corresponding position of the other cyclic nucleotide-gated channels play a similar role. We studied the corresponding glutamate (E340) of the alpha subunit of the bovine olfactory channel to determine its role in channel gating and in permeation and blockage by Ca2+ and Mg2+. E340 was mutated into either an aspartate, glycine, glutamine, or asparagine residue and properties of mutant channels expressed in Xenopus laevis oocytes were measured in excised patches. By single-channel recordings, we demonstrated that the open probabilities in the presence of cGMP or cAMP were decreased by the mutations, with a larger decrease observed on gating by cAMP. Moreover, we observed that the mutant E340N presented two conductance levels. We found that both external Ca2+ and Mg2+ powerfully blocked the current in wild-type and E340D mutants, whereas their blockage efficacy was drastically reduced when the glutamate charge was neutralized. The inward current carried by external Ca2+ relative to Na+ was larger in the E340G mutant compared with wild-type channels. In conclusion, we have confirmed that the residue at position E340 of the bovine olfactory CNG channel is in the pore region, controls permeation and blockage by external Ca2+ and Mg2+, and affects channel gating by cAMP more than by cGMP.
DOI
10.1085/jgp.116.3.311
WOS
WOS:000089245100001
Archivio
http://hdl.handle.net/20.500.11767/14206
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-0033815963
Diritti
metadata only access
Soggetti
  • Ion channels

  • DIVALENT-CATION SELEC...

  • CGMP-ACTIVATED CHANNE...

  • Settore BIO/09 - Fisi...

Scopus© citazioni
30
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
29
Data di acquisizione
Mar 26, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback