Logo del repository
  1. Home
 
Opzioni

On-line trajectory clustering for anomalous events detection

PICIARELLI, Claudio
•
FORESTI, Gian Luca
2006
  • journal article

Periodico
PATTERN RECOGNITION LETTERS
Abstract
In this paper, we propose a trajectory clustering algorithm suited for video surveillance systems. Trajectories are clustered on-line, as the data are collected, and clusters are organized in a tree-like structure that, augmented with probability information, can be used to perform behaviour analysis, since it allows the identification of anomalous events. (c) 2006 Elsevier B.V. All rights reserved.
DOI
10.1016/j.patrec.2006.02.004
WOS
WOS:000241169800010
Archivio
http://hdl.handle.net/11390/878843
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-33748453850
http://www.sciencedirect.com/science/article/pii/S0167865506000432
Diritti
closed access
Soggetti
  • Behaviour analysi

  • On-line clustering

  • Trajectory clustering...

Scopus© citazioni
200
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
162
Data di acquisizione
Mar 24, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback