Logo del repository
  1. Home
 
Opzioni

Relative error stability and instability of matrix exponential approximations for stiff numerical integration of long-time solutions

Maset S.
2021
  • journal article

Periodico
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
Abstract
We study the relative error in the numerical integration of the long-time solution of a linear ordinary differential equation y′(t)=Ay(t),t≥0, where A is a normal matrix. The numerical long-time solution is obtained by using at any step an approximation of the matrix exponential. This paper analyzes the relative error in the stiff situation and it shows that, in this situation, some A-stable approximants exhibit instability with respect to perturbations in the initial value of the long-time solution.
DOI
10.1016/j.cam.2021.113387
WOS
WOS:000618893300025
Archivio
http://hdl.handle.net/11368/2981851
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85099501192
https://www.sciencedirect.com/science/article/pii/S0377042721000066
Diritti
closed access
license:copyright editore
FVG url
https://arts.units.it/request-item?handle=11368/2981851
Soggetti
  • A-stability

  • Approximation of the ...

  • Error growth function...

  • Numerical integration...

  • Relative error

Scopus© citazioni
1
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
2
Data di acquisizione
Mar 25, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback