Logo del repository
  1. Home
 
Opzioni

Neurodegeneration in mitochondrial Complex III deficiency involves necrotic cell death

Napoletano, Francesco
•
Lebrun, Diane
•
Chatelain, Gilles
•
Mollereau, Bertrand
2013
  • conference object

Abstract
Defects in mitochondrial respiratory chain (RC) are linked to many neurodegenerative disorders, and specifically to rare mitochondrial diseases, such as Complex III (CIII) deficiency. Symptoms of CIII deficiency include encephalopathy, optic atrophy and muscle weakness. Genetic defects preventing the incorporation of the Rieske iron sulfur protein (RISP) in the mitochondrial CIII lead to CIII deficiency. Loss of RISP function has been shown to trigger oxidative-stress dependent neurodegeneration in mice, however the underlying molecular mechanisms are unknown. Degenerating neurons often exhibit apoptotic (caspase dependent) and necrotic (caspase independent) hallmarks. While a lot is known on apoptosis, much less is understood on necrotic pathways and their regulation. In addition, the distinct contribution of these forms of cell death to neurodegeneration is still unclear. Using the Drosophila RISP mutant, we have established a genetic model of necrosis to dissect the pathways of necrotic cell death and their role in the pathogenesis of disorders due to RC defects. RISPmutant photoreceptor neurons showed progressive degeneration with necrotic morphology, and no apparent developmental defect. In situ analysis of caspase activity suggests that necrotic pathways are predominant in our model. Through genetic and biochemical approaches, we have identified candidate pathways of necrosis in the RISP mutant. We are currently dissecting these pathways, and analyzing their interaction with apoptosis and with potential neuroprotective mechanisms, such as autophagy and oxidative stress response. Clarifying the multiplicity of cell death mechanisms will provide potential therapeutic strategies for effective cytoprotection in human diseases due to mitochondrial dysfunction.
Archivio
http://hdl.handle.net/11368/2940736
Diritti
metadata only access
Soggetti
  • Cell death

  • Apoptosi

  • Necrosi

  • Caspase

  • Mitochondria

  • neurodegeneration

  • mitochondrial disease...

  • p53

  • metabolism

Visualizzazioni
6
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback