Logo del repository
  1. Home
 
Opzioni

Modelling of ground motion in the vicinity of massive structures

CHIARUTTINI, C.
•
PRIOLO, E.
•
GRIMAZ, Stefano
1996
  • journal article

Periodico
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING
Abstract
A two-dimensional elastic Chebyshev spectral element method (SPEM) is used to model the seismic wavefield within a massive structure and in its vicinity. We consider 2-D models where a linear elastic structure, with quadrangular cross-section, resting on an elastic homogeneous half-space, is impinged upon by the waves generated by a surface impulse at some distance. The scattering of Rayleigh waves and the response of the structure are extensively analysed in a parametric way, varying size, mechanical parameters and shape of the load. Some of the models considered are representative of embankments and earth dams. The simulation shows that some models resonate, storing part of the incoming energy. With realistic parameters, the lowest resonance frequency is due to pure shear deformation and is controlled by the shear velocity and height of the load. Flexural modes are excited only at higher frequencies. The acceleration at the top of the structure may be five/seven times higher than at the base, depending on the mass of the structure. The gradual release of trapped energy produces a ground roll lasting several seconds after the wave front has passed. The ground-roll amplitude depends on the sturcture's mass and can be as large as 30% of the peak acceleration. Outside resonance conditions, the ground motion is almost unaffected by the presence of the artefact; the horizontal motion on top of it is nearly twice the motion at ground level. Similar results should be expected when the incident field is an upcoming shear wave. A qualitative discussion shows that the presence of anelastic attenuation in the embankment does not significantly alter the preceding conclusions, unless it is of very low values (e.g. Q < 15). The modelling results that we discuss indicate that the soil-structure interaction may substantially alter the 'free-field' ground motion. From a practical point of view, the main conclusions are: (1) careful analysis is necessary when interpreting seismic records collected in the vicinity of large artefacts; (2) seismic hazard at a site may depend on the presence of man-made structures such as embankments, dams, tall and massive buildings.
DOI
10.1016/0267-7261(95)00032-1
WOS
WOS:A1996TY28600003
Archivio
http://hdl.handle.net/11390/851163
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-0029668635
http://www.sciencedirect.com/science/article/pii/0267726195000321
Diritti
closed access
Soggetti
  • Earth dam

  • Free-field ground mot...

  • Massive structure

  • Rayleigh wave

  • Soil-structure intera...

  • Spectral element meth...

Scopus© citazioni
2
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
2
Data di acquisizione
Mar 27, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback