RENDICONTI DELL'ISTITUTO DI MATEMATICA DELL'UNIVERSITÀ DI TRIESTE
Abstract
Let ∆_G be a sublaplacian on a Carnot group, and let μ
be a local measure on the open set Ω ⊂ G. If u ∈ L^1_{loc}(Ω) is such that
−∆_Gu = μ, u ≥ 0 on Ω,
then μ_c ≥ 0, where μ_c is the concentrated component of μ with respect
to the G-capacity. This extends to the Carnot group setting a result
contained in [9].