Logo del repository
  1. Home
 
Opzioni

Intrinsic ionic conductances mediate the spontaneous electrical activity of cultured mouse myotubes

SCIANCALEPORE, MARINA
•
AFZALOV R.
•
BUZZIN V.
altro
RUZZIER, FABIO
2005
  • journal article

Periodico
BIOCHIMICA ET BIOPHYSICA ACTA
Abstract
Mouse skeletal myotubes differentiated in vitro exhibited spontaneous contractions associated with electrical activity. The ionic conductances responsible for the origin and modulation of the spontaneous activity were examined using the whole-cell patch-clamp technique and measuring [Ca2+]i transients with the Ca2+ indicator, fura 2-AM. Regular spontaneous activity was characterized by single TTX-sensitive action potentials, followed by transient increases in [Ca2+]i. Since the bath-application of Cd2+ (300 μM) or Ni2+ (50 μM) abolished the cell firing, T-type (ICa,T) and L-type (ICa,L) Ca2+ currents were investigated in spontaneously contracting myotubes. The low activation threshold (around −60 mV) and the high density of ICa,T observed in contracting myotubes suggested that ICa,T initiated action potential firing, by bringing cells to the firing threshold. The results also suggested that the activity of ICa,L could sustain the [Ca2+]i transients associated with the action potential, leading to the activation of apamin-sensitive SK-type Ca2+-activated K+ channels and the afterhyperpolarization (AHP) following single spikes. In conclusion, an interplay between voltage-dependent inward (Na+ and Ca2+) and outward (SK) conductances is proposed to mediate the spontaneous pacemaker activity in cultured muscle myotubes during the process of myogenesis.
DOI
10.1016/J.bbamem.2005.12.001
WOS
WOS:000235579000014
SCOPUS
2-s2.0-32044435135
Archivio
http://hdl.handle.net/11368/1700511
Diritti
metadata only access
Soggetti
  • myotube

  • spontaneous activity

  • T-type calcium curren...

  • L-type calcium curren...

  • SK K+ current

Web of Science© citazioni
15
Data di acquisizione
Mar 24, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback