Logo del repository
  1. Home
 
Opzioni

Homoclinic and heteroclinic solutions for non-autonomous Minkowski-curvature equations

Feltrin, Guglielmo
•
Garrione, Maurizio
2024
  • journal article

Periodico
NONLINEAR ANALYSIS
Abstract
We deal with the non-autonomous parameter-dependent second-order differential equation [Formula presented] driven by a Minkowski-curvature operator. Here, δ>0, q∈L∞(R), f:[0,1]→R is a continuous function with f(0)=f(1)=0=f(α) for some α∈]0,1[, f(s)<0 for all s∈]0,α[ and f(s)>0 for all s∈]α,1[. Based on a careful phase-plane analysis, under suitable assumptions on q we prove the existence of strictly increasing heteroclinic solutions and of homoclinic solutions with a unique change of monotonicity. Then, we analyze the asymptotic behavior of such solutions both for δ→0+ and for δ→+∞. Some numerical examples illustrate the stated results.
DOI
10.1016/j.na.2023.113419
WOS
WOS:001113191000001
Archivio
https://hdl.handle.net/11390/1266548
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85175527048
http://dx.doi.org/10.1016/j.na.2023.113419
https://ricerca.unityfvg.it/handle/11390/1266548
Diritti
open access
Soggetti
  • Asymptotic behavior

  • Heteroclinic solution...

  • Homoclinic solution

  • Minkowski-curvature e...

  • Phase-plane analysis

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback