Logo del repository
  1. Home
 
Opzioni

Biophysics of the Cochlea. Theory, Experiments and Applications

Mammano, Fabio
1992-01-23
  • doctoral thesis

Abstract
This work attempts to bring together theoretical and experimental aspects of cochlear biophysics. In both cases, the focus is on the relationship between the motility of outer hair cells and the filtering properties of the basilar membrane, as this seems the key for understanding the functioning of the peripheral auditory system. From the theoretical side, the hydrodynamics of the cochlea is studied in detail. A possible mechanism for coupling the outer hair cells to the mechanics of the basilar membrane is proposed and analysed mathematically. From the experimental side, the effects of stimulating the cochlea with extracellular current are investigated by means of laser interferometry. The necessary apparatus and the software for data acquisition were engineered in the course of this investigation. A rapid return in the realm of mathematical modelling concludes this work, with an eye on possible applications of physiological knowledge to speech recognition. The newcomer is given a succint introduction to the cochlear world in Chapter 1. A new model of cochlear biomechanics is presented in Chapter 2. A set of experiments aiming at clarifying the role of outer hair cell motility in the control of the vibration pattern of the basilar membrane are described in Chapter 3. The role of active cochlear mechanics in the processing of speech is explored in Chapter 4. Chapters 2 and 4 are the result of an intense collaboration with Prof. Renato Nobili at the Department of Physics of Padova University, Italy, following a preparatory period with Prof. Campbell L. Searle at the Massachusetts Institute of Technology, Boston, U .S.A. The results of Chapter 3 were obtained thanks to the expertise of Dr. Jonathan Ashmore, in his laboratory at the Department of Physiology of Bristol University, England.
Archivio
http://hdl.handle.net/20.500.11767/4438
Diritti
open access
Soggetti
  • Settore BIO/09 - Fisi...

  • Settore FIS/07 - Fisi...

Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback