Logo del repository
  1. Home
 
Opzioni

Experience from the construction and operation of the STAR PXL detector

Greiner, L.
•
Anderssen, E. C.
•
Contin, G.
altro
Woodmansee, S.
2015
  • conference object

Periodico
JOURNAL OF INSTRUMENTATION
Abstract
A new silicon based vertex detector called the Heavy Flavor Tracker (HFT) was installed at the Soleniodal Tracker At RHIC (STAR) experiment for the Relativistic Heavy Ion Collider (RHIC) 2014 heavy ion run to improve the vertex resolution and extend the measurement capabilities of STAR in the heavy flavor domain. The HFT consists of four concentric cylinders around the STAR interaction point composed of three different silicon detector technologies based on strips, pads and for the first time in an accelerator experiment CMOS monolithic active pixels (MAPS) . The two innermost layers at a radius of 2.8 cm and 8 cm from the beam line are constructed with 400 high resolution MAPS sensors arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors giving a total silicon area of 0.16 m(2). Each sensor consists of a pixel array of nearly 1 million pixels with a pitch of 20.7 μm with column-level discriminators, zero-suppression circuitry and output buffer memory integrated into one silicon die with a sensitive area of ~ 3.8 cm(2). The pixel (PXL) detector has a low power dissipation of 170 mW/cm(2), which allows air cooling. This results in a global material budget of 0.5% radiation length per layer for detector used in this run. A novel mechanical approach to detector insertion allows for the installation and integration of the pixel sub detector within a 12 hour period during an on-going STAR run. The detector specifications, experience from the construction and operation, lessons learned and initial measurements of the PXL performance in the 200 GeV Au-Au run will be presented.
DOI
10.1088/1748-0221/10/04/C04014
WOS
WOS:000357961700014
Archivio
http://hdl.handle.net/11368/2942022
Diritti
closed access
license:copyright editore
FVG url
https://arts.units.it/request-item?handle=11368/2942022
Soggetti
  • MAPS

  • pixe

  • monolithic

  • STAR

  • RHIC

  • resolution

Web of Science© citazioni
4
Data di acquisizione
Mar 28, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback