Logo del repository
  1. Home
 
Opzioni

On the design of smart parking networks in the smart cities: An optimal sensor placement model

Bagula, Antoine
•
CASTELLI, LORENZO
•
Zennaro, Marco
2015
  • journal article

Periodico
SENSORS
Abstract
Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called “anchor” nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results, which reveal that our solution outperforms a random placement in terms of both energy consumption, delay and throughput achieved by a smart parking network.
DOI
10.3390/s150715443
WOS
WOS:000361788200030
Archivio
http://hdl.handle.net/11368/2863206
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84934783840
http://www.mdpi.com/1424-8220/15/7/15443/pdf
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/3.0/it/
FVG url
https://arts.units.it/bitstream/11368/2863206/1/sensors-15-15443.pdf
Soggetti
  • Internet-of-Thing

  • Optimal sensor placem...

  • Radio frequency ident...

  • Smart parking

  • Wireless sensor netwo...

Web of Science© citazioni
69
Data di acquisizione
Mar 18, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback