Logo del repository
  1. Home
 
Opzioni

Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals.

BARBATI, GIULIA
•
C. Porcaro
•
F. Zappasodi
altro
F. Tecchio
2004
  • journal article

Periodico
CLINICAL NEUROPHYSIOLOGY
Abstract
To propose a noise reduction procedure for magnetoencephalography (MEG) signals introducing an automatic detection system of artifactual components (ICs) separated by an independent component analysis (ICA) algorithm, and a control cycle on reconstructed cleaned data to recovery part of non-artifactual signals possibly lost by the blind mechanism.The procedure consisted of three main steps: (1) ICA for blind source separation (BSS); (2) automatic detection method of artifactual components, based on statistical and spectral ICs characteristics; (3) control cycle on 'discrepancy,' i.e. on the difference between original data and those reconstructed using only ICs automatically retained. Simulated data were generated as representative mixtures of some common brain frequencies, a source of internal Gaussian noise, power line interference, and two real artifacts (electrocardiogram=ECG, electrooculogram=EOG), with the adjunction of a matrix of Gaussian external noise. Three real data samples were chosen as representative of spontaneous noisy MEG data.In simulated data the proposed set of markers selected three components corresponding to ECG, EOG and the Gaussian internal noise; in real-data examples, the automatic detection system showed a satisfactory performance in detecting artifactual ICs. 'Discrepancy' control cycle was redundant in simulated data, as expected, but it was a significant amelioration in two of the three real-data cases.The proposed automatic detection approach represents a suitable strengthening and simplification of pre-processing data analyses. The proposed 'discrepancy' evaluation, after automatic pruning, seems to be a suitable way to render negligible the risk of loose non-artifactual activity when applying BSS methods to real data.The present noise reduction procedure, including ICA separation phase, automatic artifactual ICs selection and 'discrepancy' control cycle, showed good performances both on simulated and real MEG data. Moreover, application to real signals suggests the procedure to be able to separate different cerebral activity sources, even if characterized by very similar frequency contents.
DOI
10.1016/j.clinph.2003.12.015
WOS
WOS:000221305900028
Archivio
http://hdl.handle.net/11368/2440362
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-1842455280
http://dx.doi.org/10.1016/j.clinph.2003.12.015
Diritti
metadata only access
Soggetti
  • Algorithms, Artifacts...

  • physiology, Computer ...

  • Statistical, Humans, ...

  • Statistical, Normal D...

Web of Science© citazioni
231
Data di acquisizione
Mar 4, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback