Logo del repository
  1. Home
 
Opzioni

Phytosiderophores released by graminaceous species promote Fe-59-uptake in citrus

Cesco, S
•
Rombolà, AD
•
Tagliavini, M
altro
PINTON, Roberto
2006
  • journal article

Periodico
PLANT AND SOIL
Abstract
Chlorosis-susceptible fruit trees growing on calcareous soils have been observed to recover in the presence of grass cover species. However, the physiological mechanisms behind this phenomenon are only scarcely understood. An investigation was carried out to verify whether citrus plants can use 59Fe solubilized from a sparingly soluble source by the phytosiderophores (PS) released from graminaceous species. Experiments were performed in hydroponics, using two citrus rootstocks differing in their sensitivity to Fe-deficiency in the field (Poncirus trifoliata x Citrus paradisi, citrumelo "Swingle", highly susceptible, and Citrus aurantium L., moderately tolerant). Barley (Hordeum vulgare L., cv Europa) was used as a model species for PS-releasing graminaceous plants. Fe-deficient citrus plants increased 59Fe-uptake from 59Fe-hydroxide supplied inside a dialysis tube, when Fe-deficient barley plants or PS-containing barley root exudates were present in the uptake solution, this effect being particularly evident for the susceptible rootstock. 59Fe-uptake from 59Fe-hydroxide was also enhanced in Fe-deficient citrumelo "Swingle" in the presence of Fe-deficient Poa pratensis L. and Festuca rubra L., two perennial grasses normally grown in association with fruit trees; no effect was found when Fe-sufficient grasses were employed. The uptake of 59Fe by the susceptible citrus rootstock increased in proportion to the amount of 2′-deoxymugineic acid (DMA), the major PS released by Fe-deficient F. rubra, present in the uptake solution. The beneficial effect of F. rubra or P. pratensis was evident from the leaf re-greening observed when Fe-deficient citrumelo "Swingle" plants were grown in association with the grasses in pots filled with a calcareous soil. Leaf re-greening was not observed when citrumelo "Swingle" plants and yellow stripe 3 (ys3) maize (Zea mays L.) mutant plants, unable to release PS, were co-cultivated in pots filled with calcareous soil, unless exogenous PS were added to the soil. Results indicate that graminaceous cover species can improve the Fe-nutrition of fruit trees grown on calcareous soils by enhancing Fe-availability. © 2006 Springer Science+Business Media B.V.
DOI
10.1007/s11104-006-9069-4
WOS
WOS:000241892500021
Archivio
http://hdl.handle.net/11390/856797
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-33749528127
http://link.springer.com/article/10.1007%2Fs11104-006-9069-4
Diritti
closed access
Soggetti
  • Citru

  • Barley

  • Wild grasse

  • Cover crop

  • Iron deficiency

  • Phytosiderophore

  • EXTRACTABLE HUMIC SUB...

  • CALCAREOUS SOIL

  • PLANT-BORNE

  • MOBILIZATION

  • FE

  • ACQUISITION

  • REDUCTION

  • CHLOROSIS

  • ROOTS

Scopus© citazioni
48
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
46
Data di acquisizione
Mar 18, 2024
Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback