We prove that the only domain $\Omega$ such that there exists a solution to the following overdetermined problem $\Deltau+\omega2u=−1$ in in $\Omega$, u = 0 on $\partial\Omega$, and $\partialnu = c$ on $\partial\Omega$, is the ball B1, independently on the sign of u, if we assume that the boundary $\partial\Omega$ is a perturbation (no necessarily regular) of the unit sphere $\partialB1$ of Rn. Here $\omega2 \neq (\lambdan)n\geq1$ (the eigenvalues of $−\Delta$ in B1 with Dirichlet boundary conditions), and $\omega \Lambda$, where $\Lambda$ is a enumerable set of R+, whose limit points are the values $\lambda1m$, for some integer $m\geq1$, $\lambda1m$ being the mth-zero of the first-order Bessel function I1.