Logo del repository
  1. Home
 
Opzioni

Classification of insulators using neural network based on computer vision

Stefenon Stéfano Frizzo
•
Corso M. P.
•
Nied A.
altro
Leithardt V. R. Q.
2022
  • journal article

Periodico
IET GENERATION, TRANSMISSION & DISTRIBUTION
Abstract
Insulators of the electrical power grid are usually installed outdoors, so they suffer from environmental stresses, such as the presence of contamination. Contamination can increase surface conductivity, which can lead to system failures, reducing the reliability of the network. The identification of insulators that have their properties compromised is important so that there are no discharges through its insulating body. To perform the classification of contaminated insulators, this paper presents computer vision techniques for the extraction of contamination characteristics, and a neural network (NN) model for the classification of this condition. Specifically, the Sobel edge detector, Canny edge detection, binarization with threshold, adaptive binarization with threshold, threshold with Otsu and Riddler–Calvard techniques will be evaluated. The results show that it is possible to have an accuracy of up to 97.50% for the classification of contaminated insulators from the extraction of characteristics with computer vision using the NN for the classification. The proposed model is more accurate than well-established models such as support-vector machine (SVM), k-nearest neighbor (k-NN), and ensemble learning methods. This showed that optimizing the model's parameters can make it superior to solve the problem in question.
DOI
10.1049/gtd2.12353
Archivio
http://hdl.handle.net/11390/1217155
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85120711076
https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/gtd2.12353
https://ricerca.unityfvg.it/handle/11390/1217155
Diritti
open access
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback