Logo del repository
  1. Home
 
Opzioni

Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below

Ambrosio, L.
•
Gigli, N.
•
Savaré, G.
2014
  • journal article

Periodico
INVENTIONES MATHEMATICAE
Abstract
This paper is devoted to a deeper understanding of the heat flow and to the refinement of calculus tools on metric measure spaces $(X,d,m)$. Our main results are: 1) A general study of the relations between the Hopf-Lax semigroup and Hamilton- Jacobi equation in metric spaces $(X,d)$. 2) The equivalence of the heat flow in $L^2(X,m)$ generated by a suitable Dirichlet energy and the Wasserstein gradient flow of the relative entropy functional $Ent_m$ in the space of probability measures $P(X)$. 3) The proof of density in energy of Lipschitz functions in the Sobolev space $W^{1.2}(X,d,m)$ under the only assumption that $m$ is locally finite. 4) A fine and very general analysis of the differentiability properties of a large class of Kantorovich potentials, in connection with the optimal transport problem, is the third achievement of the paper. Our results apply in particular to spaces satisfying Ricci curvature bounds in the sense of Lott & Villani [28] and Sturm [36, 37] and require neither the doubling property nor the validity of the local Poincare' inequality
DOI
10.1007/s00222-013-0456-1
WOS
WOS:000330340100001
Archivio
http://hdl.handle.net/20.500.11767/16707
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84873602736
https://arxiv.org/abs/1106.2090
Diritti
open access
license:non specificato
license:non specificato
license uri:na
Soggetti
  • analysis on metric me...

  • Settore MAT/05 - Anal...

Scopus© citazioni
205
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
255
Data di acquisizione
Mar 27, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback