Logo del repository
  1. Home
 
Opzioni

The Kontsevich–Penner Matrix Integral, Isomonodromic Tau Functions and Open Intersection Numbers.

Bertola, Marco
•
Ruzza, Giulio
2019
  • journal article

Periodico
ANNALES HENRI POINCARE'
Abstract
We identify the Kontsevich–Penner matrix integral, for finite size n, with the isomonodromic tau function of a 3×3 rational connection on the Riemann sphere with n Fuchsian singularities placed in correspondence with the eigenvalues of the external field of the matrix integral. By formulating the isomonodromic system in terms of an appropriate Riemann–Hilbert boundary value problem, we can pass to the limit →∞ (at a formal level) and identify an isomonodromic system in terms of Miwa variables, which play the role of times of a KP hierarchy. This allows to derive the String and Dilaton equations via a purely Riemann–Hilbert approach. The expression of the formal limit of the partition function as an isomonodromic tau function allows us to derive explicit closed formulæ for the correlators of this matrix model in terms of the solution of the Riemann Hilbert problem with all times set to zero. These correlators have been conjectured to describe the intersection numbers for Riemann surfaces with boundaries, or open intersection numbers.
DOI
10.1007/s00023-018-0737-8
WOS
WOS:000457970600002
Archivio
http://hdl.handle.net/20.500.11767/87736
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85057301618
https://link.springer.com/article/10.1007%2Fs00023-018-0737-8
Diritti
open access
Soggetti
  • Settore MAT/07 - Fisi...

Scopus© citazioni
7
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
6
Data di acquisizione
Mar 26, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback