Logo del repository
  1. Home
 
Opzioni

The influence of light-curing time on the bacterial colonization of resin composite surfaces

Eugenio Brambilla
•
Massimo Gagliani
•
IONESCU, ANDREI CRISTIAN
altro
Franklin García Godoy
2009
  • journal article

Periodico
DENTAL MATERIALS
Abstract
Objectives. Bacterial colonization of composite surfaces represents the main factor in the etiology of secondary caries around adhesive restorations. The authors’ aim was to evaluate the influence of light-curing time on mutans streptococci colonization (MS) of a resin composite material. Methods. Specimens obtained from a dental resin composite were divided into 12 groups and light-cured with the same light source respectively for 10, 20, 30, 40, 60 or 80 s using two different curing-power levels: 400 and 800mW/cm2. A wild strain of MS was isolated and a 24-h-monospecific biofilm, adherent to the surfaces of the samples, was obtained. A colorimetric technique (MTT assay), based on the reduction of a yellow tetrazolium salt to a purple formazan, was used to evaluate the biomass adherent to the specimen surfaces. ANOVA and Scheffé’s tests were used to statistically analyze the results. Results. Two-way ANOVA demonstrated there was no interaction between curing-time factor and curing-power factor (p = 0.970); one-way ANOVA was used to analyze separately the data obtained from each curing-power level. Both levels showed highly significant differences (p < 0.0001) among the different curing time groups. The non-parametric test for trend showed in both levels the existence of a highly significant trend (p < 0.0001) for bacterial colonization reduction as curing time increases. Significance. A reduced curing time seems to be responsible for increased in vitro colonization of composite surfaces by MS; this phenomenon is likely to be related to the presence of unpolymerized monomers on the material surface.
DOI
10.1016/j.dental.2009.02.012
WOS
WOS:000269268800001
Archivio
http://hdl.handle.net/11368/2761559
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-67651113907
Diritti
metadata only access
Soggetti
  • biofilm

  • carie

  • mutans streptococci

  • light-curing

  • composites

Scopus© citazioni
48
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
51
Data di acquisizione
Mar 22, 2024
Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback