Logo del repository
  1. Home
 
Opzioni

An interpolation theorem for slice-regular functions with application to very tame sets and slice Fatou–Bieberbach domains in H 2

Jasna Prezelj
•
Fabio Vlacci
2022
  • journal article

Periodico
ANNALI DI MATEMATICA PURA ED APPLICATA
Abstract
We prove an interpolation theorem for slice-regular quaternionic functions. We define very tame sets in H 2 to be the sets which can be mapped by compositions of automorphisms with volume 1 to the set T = {(2n − 1, 0), n ∈ N} ∪ {(2n + S, 0), n ∈ N}. We then show that any zero set of a slice-regular function of one variable embedded in H × {0} ⊂ H 2 is very tame in H 2 . A notion of slice Fatou–Bieberbach domain in H 2 is introduced and, finally, a slice Fatou–Bieberbach domain in H 2 avoiding T is constructed in the last section.
DOI
10.1007/s10231-022-01195-w
WOS
WOS:000764575200001
Archivio
https://hdl.handle.net/11368/3005579
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85125571352
https://link.springer.com/article/10.1007/s10231-022-01195-w
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3005579/6/s10231-022-01195-w.pdf
Soggetti
  • quaternion

  • slice-regular functio...

  • very tame set

  • slice Fatou–Bieberbac...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback