Logo del repository
  1. Home
 
Opzioni

On the N-Cheeger problem for component-wise increasing norms

Saracco, Giorgio
•
Stefani, Giorgio
2024
  • journal article

Periodico
JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES
Abstract
We study Cheeger and p- eigenvalue partition problems depending on a given evaluation function Phi for p is an element of [1, infinity). We prove existence and regularity of minima, relations between the problems, convergence, and stability with respect to p and to Phi . (c) 2024 Elsevier Masson SAS. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
DOI
10.1016/j.matpur.2024.06.008
WOS
WOS:001282572400001
Archivio
https://hdl.handle.net/20.500.11767/140481
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85199759123
https://arxiv.org/abs/2401.16041
https://ricerca.unityfvg.it/handle/20.500.11767/140481
Diritti
open access
Soggetti
  • Partition

  • Isoperimetric

  • Spectral

  • Cheeger constant

  • Dirichlet eigenvalue

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback