Logo del repository
  1. Home
 
Opzioni

Minimizers of non convex scalar functionals and viscosity solutions of Hamilton-Jacobi equations

Zagatti, Sandro
2008
  • journal article

Periodico
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
Abstract
We consider a class of non convex scalar functionals of the form F(u) = ∫Ω f(x,u,Du)dx, under standard assumptions of regularity of the solutions of the associated relaxed problem and of local affinity of the bipolar f ** of f on the set {f ** < f}. We provide an existence theorem, which extends known results to lagrangians depending explicitly on the three variables, by the introduction of integro-extremal minimizers of the relaxed functional which solve the equation f** (x, u,Du) - f(x, u,Du) =0, or the opposite one, almost everywhere and in viscosity sense. © 2007 Springer-Verlag.
DOI
10.1007/s00526-007-0124-7
WOS
WOS:000252872500007
Archivio
http://hdl.handle.net/20.500.11767/12432
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-38849204177
https://doi.org/10.1007/s00526-007-0124-7
Diritti
closed access
Soggetti
  • Calculus of variation...

  • Integro-extremality m...

  • Settore MAT/05 - Anal...

Scopus© citazioni
14
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
15
Data di acquisizione
Mar 22, 2024
Visualizzazioni
7
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback