Logo del repository
  1. Home
 
Opzioni

Multi-Output Tree Chaining: An Interpretative Modelling and Lightweight Multi-Target Approach

Mastelini SM
•
da Costa VGT
•
Santana EJ
altro
Barbon Junior S
2019
  • journal article

Periodico
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL, IMAGE, AND VIDEO TECHNOLOGY
Abstract
Multi-target regression (MTR) regards predictive problems with multiple numerical targets. To solve this, machine learning techniques can model solutions treating each target as a separated problem based only on the input features. Nonetheless, modelling inter-target correlation can improve predictive performance. When performing MTR tasks using the statistical dependencies of targets, several approaches put aside the evaluation of each pair-wise correlation between those targets, which may differ for each problem. Besides that, one of the main drawbacks of the current leading MTR method is its high memory cost. In this paper, we propose a novel MTR method called Multi-output Tree Chaining (MOTC) to overcome the mentioned disadvantages. Our method provides an interpretative internal tree-based structure which represents the relationships between targets denominated Chaining Trees (CT). Different from the current techniques, we compute the outputs dependencies, one-by-one, based on the Random Forest importance metric. Furthermore, we proposed a memory friendly approach which reduces the number of required regression models when compared to a leading method, reducing computational cost. We compared the proposed algorithm against three MTR methods (Single-target - ST; Multi-Target Regressor Stacking - MTRS; and Ensemble of Regressor Chains - ERC) on 18 benchmark datasets with two base regression algorithms (Random Forest and Support Vector Regression). The obtained results show that our method is superior to the ST approach regarding predictive performance, whereas, having no significant difference from ERC and MTRS. Moreover, the interpretative tree-based structures built by MOTC pose as great insight on the relationships among targets. Lastly, the proposed solution used significantly less memory than ERC being very similar in predictive performance.
WOS
WOS:000456065100007
Archivio
https://hdl.handle.net/11368/3004504
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85046496214
https://link.springer.com/article/10.1007/s11265-018-1376-5
Diritti
open access
license:copyright editore
license:digital rights management non definito
license uri:iris.pri02
license uri:iris.pri00
FVG url
https://arts.units.it/request-item?handle=11368/3004504
Soggetti
  • Machine Learning

  • Multi-output Machine ...

  • Multi-target

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback