Opzioni
Targeting prolyl-isomerase Pin1 prevents mitochondrial oxidative stress and vascular dysfunction: insights in patients with diabetes
2015
Periodico
EUROPEAN HEART JOURNAL
Abstract
AIM:
Diabetes is a major driver of cardiovascular disease, but the underlying mechanisms remain elusive. Prolyl-isomerase Pin1 recognizes specific peptide bonds and modulates function of proteins altering cellular homoeostasis. The present study investigates Pin1 role in diabetes-induced vascular disease.
METHODS AND RESULTS:
In human aortic endothelial cells (HAECs) exposed to high glucose, up-regulation of Pin1-induced mitochondrial translocation of pro-oxidant adaptor p66(Shc) and subsequent organelle disruption. In this setting, Pin1 recognizes Ser-116 inhibitory phosphorylation of endothelial nitric oxide synthase (eNOS) leading to eNOS-caveolin-1 interaction and reduced NO availability. Pin1 also mediates hyperglycaemia-induced nuclear translocation of NF-κB p65, triggering VCAM-1, ICAM-1, and MCP-1 expression. Indeed, gene silencing of Pin1 in HAECs suppressed p66(Shc)-dependent ROS production, restored NO release and blunted NF-kB p65 nuclear translocation. Consistently, diabetic Pin1(-/-) mice were protected against mitochondrial oxidative stress, endothelial dysfunction, and vascular inflammation. Increased expression and activity of Pin1 were also found in peripheral blood monocytes isolated from diabetic patients when compared with age-matched healthy controls. Interestingly, enough, Pin1 up-regulation was associated with impaired flow-mediated dilation, increased urinary 8-iso-prostaglandin F2α and plasma levels of adhesion molecules.
CONCLUSIONS:
Pin1 drives diabetic vascular disease by causing mitochondrial oxidative stress, eNOS dysregulation as well as NF-kB-induced inflammation. These findings provide molecular insights for novel mechanism-based therapeutic strategies in patients with diabetes.
Diritti
open access
license:copyright editore
license:copyright editore
Soggetti
-
Diabetes mellitu
-
Endothelial function
-
Inflammation
-
Oxidative stre
-
Analysis of Variance
-
Animal
-
Aorta
-
Case-Control Studie
-
Cells, Cultured
-
Chemokine CCL2
-
Cytochromes c
-
Diabetic Angiopathie
-
Endothelial Cell
-
Endothelium, Vascular...
-
Gene Knockdown Techni...
-
Glucose
-
Human
-
Hyperglycemia
-
Intercellular Adhesio...
-
Male
-
Mice, Inbred C57BL
-
Mitochondrial Disease...
-
NF-kappa B
-
Nitric Oxide Synthase...
-
Nitric Oxide Synthase...
-
Oxidative Stre
-
Peptidylprolyl Isomer...
-
Reactive Oxygen Speci...
-
Shc Signaling Adaptor...
-
Up-Regulation
-
Vascular Cell Adhesio...
-
Vasculitis
Scopus© citazioni
65
Data di acquisizione
Jun 14, 2022
Jun 14, 2022
Web of Science© citazioni
69
Data di acquisizione
Mar 11, 2024
Mar 11, 2024