Logo del repository
  1. Home
 
Opzioni

Non-equilibrium Thermodynamics of Spacetime: The Role of Gravitational Dissipation

G. CHIRCO
•
Liberati, Stefano
2010
  • journal article

Periodico
PHYSICAL REVIEW D, PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY
Abstract
In [T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995).] it was shown that the Einstein equation can be derived as a local constitutive equation for an equilibrium spacetime thermodynamics. More recently, in the attempt to extend the same approach to the case of f(R) theories of gravity, it was found that a nonequilibrium setting is indeed required in order to fully describe both this theory as well as classical general relativity (GR) [C. Eling, R. Guedens, and T. Jacobson, Phys. Rev. Lett. 96, 121301 (2006).]. Here, elaborating on this point, we show that the dissipative character leading to nonequilibrium spacetime thermodynamics is actually related-both in GR as well as in f(R) gravity-to nonlocal heat fluxes associated with the purely gravitational/internal degrees of freedom of the theory. In particular, in the case of GR we show that the internal entropy production term is identical to the so-called tidal heating term of Hartle-Hawking. Similarly, for the case of f(R) gravity, we show that dissipative effects can be associated with the generalization of this term plus a scalar contribution whose presence is clearly justified within the scalar-tensor representation of the theory. Finally, we show that the allowed gravitational degrees of freedom can be fixed by the kinematics of the local spacetime causal structure, through the specific equivalence principle formulation. In this sense, the thermodynamical description seems to go beyond Einstein's theory as an intrinsic property of gravitation.
DOI
10.1103/PhysRevD.81.024016
WOS
WOS:000275068900064
Archivio
http://hdl.handle.net/20.500.11767/12250
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-77649223905
Diritti
closed access
Scopus© citazioni
60
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
74
Data di acquisizione
Mar 16, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback