Logo del repository
  1. Home
 
Opzioni

Bidirectional LSTM recurrent neural network for keyphrase extraction

Marco Basaldella
•
ANTOLLI, ELISA
•
Giuseppe Serra
•
Carlo Tasso
2018
  • conference object

Abstract
To achieve state-of-the-art performance, keyphrase extraction systems rely on domain-specific knowledge and sophisticated features. In this paper, we propose a neural network architecture based on a Bidirectional Long Short-Term Memory Recurrent Neural Network that is able to detect the main topics on the input documents without the need of defining new hand-crafted features. A preliminary experimental evaluation on the well-known INSPEC dataset confirms the effectiveness of the proposed solution.
DOI
10.1007/978-3-319-73165-0_18
WOS
WOS:000434481000018
Archivio
http://hdl.handle.net/11390/1124986
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85041851059
Diritti
open access
Scopus© citazioni
23
La settimana scorsa
1
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
29
Data di acquisizione
Mar 4, 2024
Visualizzazioni
5
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback