Logo del repository
  1. Home
 
Opzioni

Charge-density waves and surface Mott insulators for adlayer structures on semiconductors: Extended Hubbard modeling

Santoro, Giuseppe Ernesto
•
Sandro Scandolo
•
Erio Tosatti
1999
  • journal article

Periodico
PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS
Abstract
Motivated by the recent experimental evidence of commensurate surface charge-density waves (CDW) in Pb/Ge(lll) and Sn/Ge(lll) root 3-adlayer structures, as well as by the insulating states found on K/Si(lll):B and SiC(0001), we have investigated the role of electron-electron interactions, and also of electron-phonon coupling, on the narrow surface-state band originating from the outer dangling-bond orbitals of the surface. We model the root 3 dangling-bond lattice by an extended two-dimensional Hubbard model at half filling on a triangular lattice. The hopping integrals are calculated by fitting first-principle results for the surface band. We include an on-site Hubbard repulsion U and a nearest-neighbor Coulomb interaction V, plus a long-ranged Coulomb tail. The electron-phonon interaction is treated in the deformation potential approximation. We have explored the phase diagram of this model including the possibility of commensurate 3 X 3 phases, using mainly the Hartree-Fock approximation. For U larger than the bandwidth we find a noncollinear antiferromagnetic spin-density wave (SDW) insulator, possibly corresponding to the situation on the SiC and K/Si surfaces. For U comparable or smaller, a rich phase diagram arises, with several phases involving combinations of charge and spin-density-waves (SDW), with or without a net magnetization. We find that insulating, or partly metallic 3 X 3 CDW phases can be stabilized by two different physical mechanisms. One is the intersite repulsion V, which together with electron-phonon coupling can lower the energy of a charge modulation. The other is a magnetically-induced Fermi-surface nesting, stabilizing a net cell magnetization of 1/3, plus a collinear SDW, plus an associated weak CDW. Comparison with available experimental evidence, and also with first-principle calculations is made.
DOI
10.1103/PhysRevB.59.1891
WOS
WOS:000078291000063
Archivio
http://hdl.handle.net/20.500.11767/14816
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-0000937032
https://arxiv.org/pdf/cond-mat/9809016.pdf
Diritti
closed access
Soggetti
  • Condensed Matter - St...

  • Hubbard modeling

  • Settore FIS/03 - Fisi...

Scopus© citazioni
80
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
76
Data di acquisizione
Mar 25, 2024
Visualizzazioni
5
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback