Logo del repository
  1. Home
 
Opzioni

The complexity of symbiotic interactions influences the ecological amplitude of the host: a case study in Stereocaulon (lichenized Ascomycota).

Lucie VanÄ urová
•
Lucia Muggia
•
OndÅ ej Peksa
altro
Pavel Å kaloud
2018
  • journal article

Periodico
MOLECULAR ECOLOGY
Abstract
Symbiosis plays a fundamental role in nature. Lichens are among the best known, globally distributed symbiotic systems whose ecology is shaped by the requirements of all symbionts forming the holobiont. The widespread lichen-forming fungal genus Stereocaulon provides a suitable model to study the ecology of microscopic green algal symbionts (i.e., phycobionts) within the lichen symbiosis. We analyzed 282 Stereocaulon specimens, collected in diverse habitats worldwide, using the algal ITS rDNA and actin gene sequences and fungal ITS rDNA sequences. Phylogenetic analyses revealed a great diversity among the predominant phycobionts. The algal genus Asterochloris (Trebouxiophyceae) was recovered in most sampled thalli, but two additional genera, Vulcanochloris and Chloroidium, were also found. We used variation-partitioning analyses to investigate the effects of climatic conditions, substrate/habitat characteristic, spatial distribution, and mycobionts on phycobiont distribution. Analogically, we examined the effects of climate, substrate/habitat, spatial distribution, and phycobionts on mycobiont distribution. According to our analyses, the distribution of phycobionts is primarily driven by mycobionts and vice versa. Specificity and selectivity of both partners, as well as their ecological requirements and the width of their niches vary significantly among the species-level lineages. We demonstrated that species-level lineages, which accept more symbiotic partners, have wider climatic niches, overlapping with the niches of their partners. Furthermore, the survival of lichens on substrates with high concentrations of heavy metals appears to be supported by their association with toxicity-tolerant phycobionts. In general, low specificity towards phycobionts allows the host to associate with ecologically diversified algae, thereby, broadening its ecological amplitude.
DOI
10.1111/mec.14764.
WOS
WOS:000438352500009
Archivio
http://hdl.handle.net/11368/2927175
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85049778161
https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.14764
Diritti
open access
license:copyright editore
license:copyright editore
license:digital rights management non definito
license:digital rights management non definito
FVG url
https://arts.units.it/request-item?handle=11368/2927175
Soggetti
  • symbiosi

  • lichen

  • phycobiont

  • ecological niche

  • diversity

  • specificity

Scopus© citazioni
34
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback