Logo del repository
  1. Home
 
Opzioni

Multi-temporal analysis to support the management of torrent control structures

Cucchiaro S.
•
Martini L.
•
Maset E.
altro
Picco L.
2024
  • journal article

Periodico
CATENA
Abstract
In the last decade with increasing frequency of extreme weather events, an accurate, sustainable, and effective planning of torrent control structures has become essential to reduce hydro-geomorphic risk. Quite often in planning interventions, there is a lack of information on the effectiveness of existing structures, the evolution of the ongoing hydro-geomorphic process, and a priori in-depth study to analyze the sediment morphology dynamics and the interaction with possible existing torrent control structures. Nowadays, High-Resolution Topography data (HRT) greatly simplifies the monitoring of sediment morphology dynamics and the understanding of the interaction with torrent control structures over time. Therefore, thanks to repeated HRT surveys, it is possible to derive multi-temporal Digital Terrain Models (DTMs), and DTMs of Difference (DoDs) to quantify the morphological changes and study continuously the catchment morphodynamics. This information can be very valuable to support watershed management plans if combined with up-to-date field surveys that identify the existing torrent control structures, and asses their current status and functionality. The present work aims at introducing a methodological approach based on the integration of the sediment morphology dynamics data over large time spans (e.g., from 2003 to 2022), obtained by multi-temporal DoDs (realized from three DTMs at 1 m resolution), with an updating cadastre of torrent control structures enriched by a very simple, quick, and user-friendly Maintenance Priority index (MPi). The proposed workflow proved to be very useful in the test basins analysed, providing more complete data on torrent control structures and sediment dynamics evidence to stakeholders compared to the past. Moreover, it served as a proxy to assess the long-term effectiveness of the management interventions. The approach also helped to constantly identify the areas most prone to hazards, improve the intervention planning, and find more appropriate solutions or direct the maintenance works. Finally, the suggested workflow could be the starting point to outline up-to-date guidelines to be used in other catchments equipped with torrent control structures, emphasizing possible intervention priorities on where decision-makers could better invest resources. By providing current information and accurate tools to realize a more complete decision-making chain, which is often neglected, it is certainly possible to support more sustainable and effective risk management decisions.
DOI
10.1016/j.catena.2023.107599
WOS
WOS:001110400800001
Archivio
https://hdl.handle.net/11390/1267284
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85176416963
https://ricerca.unityfvg.it/handle/11390/1267284
Diritti
open access
Soggetti
  • Hydro-geomorphic risk...

  • Maintenance Priority ...

  • Multi-temporal analys...

  • Sediment morphology d...

  • Torrent control struc...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback