Logo del repository
  1. Home
 
Opzioni

Interaction functionals, Glimm approximations and Lagrangian structure of BV solutions for Hyperbolic Systems of Conservation Laws

Modena, Stefano
2015-09-25
  • doctoral thesis

Abstract
This thesis is a contribution to the mathematical theory of Hyperbolic Conservation Laws. Three are the main results which we collect in this work. The first and the second result (denoted in the thesis by Theorem A and Theorem B respectively) deal with the following problem. The most comprehensive result about existence, uniqueness and stability of the solution to the Cauchy problem \begin{equation}\tag{$\mathcal C$} \label{E:abstract} \begin{cases} u_t + F(u)_x = 0, \\u(0, x) = \bar u(x), \end{cases} \end{equation} where $F: \R^N \to \R^N$ is strictly hyperbolic, $u = u(t,x) \in \R^N$, $t \geq 0$, $x \in \R$, $\TV(\bar u) \ll 1$, can be found in [Bianchini, Bressan 2005], where the well-posedness of \eqref{E:abstract} is proved by means of vanishing viscosity approximations. After the paper [Bianchini, Bressan 2005], however, it seemed worthwhile to develop a \emph{purely hyperbolic} theory (based, as in the genuinely nonlinear case, on Glimm or wavefront tracking approximations, and not on vanishing viscosity parabolic approximations) to prove existence, uniqueness and stability results. The reason of this interest can be mainly found in the fact that hyperbolic approximate solutions are much easier to study and to visualize than parabolic ones. Theorems A and B in this thesis are a contribution to this line of research. In particular, Theorem A proves an estimate on the change of the speed of the wavefronts present in a Glimm approximate solution when two of them interact; Theorem B proves the convergence of the Glimm approximate solutions to the weak admissible solution of \eqref{E:abstract} and provides also an estimate on the rate of convergence. Both theorems are proved in the most general setting when no assumption on $F$ is made except the strict hyperbolicity. The third result of the thesis, denoted by Theorem C, deals with the Lagrangian structure of the solution to \eqref{E:abstract}. The notion of Lagrangian flow is a well-established concept in the theory of the transport equation and in the study of some particular system of conservation laws, like the Euler equation. However, as far as we know, the general system of conservations laws \eqref{E:abstract} has never been studied from a Lagrangian point of view. This is exactly the subject of Theorem C, where a Lagrangian representation for the solution to the system \eqref{E:abstract} is explicitly constructed. The main reasons which led us to look for a Lagrangian representation of the solution of \eqref{E:abstract} are two: on one side, this Lagrangian representation provides the continuous counterpart in the exact solution of \eqref{E:abstract} to the well established theory of wavefront approximations; on the other side, it can lead to a deeper understanding of the behavior of the solutions in the general setting, when the characteristic field are not genuinely nonlinear or linearly degenerate.
Archivio
http://hdl.handle.net/20.500.11767/4873
Diritti
open access
Soggetti
  • Lagrangian representa...

  • Glimm approximations

  • Interaction functiona...

  • Hyperbolic conservati...

  • Settore MAT/05 - Anal...

Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback