Logo del repository
  1. Home
 
Opzioni

How to choose the best tertiary treatment for pulp and paper wastewater? Life cycle assessment and economic analysis as guidance tools

Mainardis, Matia
•
Ferrara, Carmen
•
Cantoni, Beatrice
altro
Goi, Daniele
2024
  • journal article

Periodico
SCIENCE OF THE TOTAL ENVIRONMENT
Abstract
: Pulp and paper wastewater (P&P WW) often requires tertiary treatment to remove refractory compounds not eliminated by conventional biological treatment, ensuring compliance with high-quality effluent discharge or reuse standards. This study employs a life cycle assessment (LCA) methodology to compare alternative tertiary treatment technologies for P&P WW and rank them accordingly. The evaluated technologies in the scenarios include inorganic (S1) and organic (S2) coagulation-flocculation, ozonation (O3) (S3), O3+granular activated carbon (GAC) (S4), and ultrafiltration (UF)+reverse osmosis (RO) (S5). The analysis focuses on a P&P wastewater treatment plant (WWTP) in Northeastern Italy. The LCA is complemented by an economic analysis considering each technology's capital and operating costs, as well as potential revenues from internal effluent reuse. Results indicate that S4 (O3+GAC) outranks all the other scenarios in terms of both environmental performance and economic viability, primarily due to the advantages associated with effluent reuse. S5 (UF+RO), which also involves reuse, is limited by the high energy consumption of UF+RO, resulting in increased environmental impacts and costs. The physicochemical scenario S2 (Chem Or), currently utilized in the WWTP under study, remains the best-performing technology in the absence of effluent reuse. In contrast, S3 (O3 alone) exhibits the poorest environmental and economic outcomes due to substantial energy requirements for O3 generation and the inability to reuse the treated effluent directly. Lastly, a sensitivity analysis underscores the strong influence of chemical dosages in S1 and S2 on environmental and economic impacts, which is more significant than the impact of water reuse percentages in S4 and S5. The high electricity cost observed during 2022 negatively affects the energy-intensive scenarios (S3-S5), making coagulation-flocculation (S1-S2) even more convenient.
DOI
10.1016/j.scitotenv.2023.167598
WOS
WOS:001091786400001
Archivio
https://hdl.handle.net/11390/1262486
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85173234197
https://ricerca.unityfvg.it/handle/11390/1262486
Diritti
open access
Soggetti
  • Granular activated ca...

  • Industrial wastewater...

  • LCA

  • Ozonation

  • Reverse osmosi

  • Ultrafiltration

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback