Logo del repository
  1. Home
 
Opzioni

Kakutani-von Neumann maps on simplexes

PANTI, Giovanni
2011
  • journal article

Periodico
ACTA ARITHMETICA
Abstract
A Kakutani-von Neumann map is the push-forward of the group rotation (Z_2,+1) to a unit simplex via an appropriate topological quotient. The usual quotient towards the unit interval is given by the base 2 expansion of real numbers, which in turn is induced by the doubling map. In this paper we replace the doubling map with an n-dimensional generalization of the tent map; this allows us to define Kakutani-von Neumann transformations in simplexes of arbitrary dimensions. The resulting maps are piecewise-linear bijections (not just mod 0 bijections), whose orbits are all uniformly distributed; in particular, they are uniquely ergodic w.r.t. the Lebesgue measure. The forward orbit of a certain vertex provides an enumeration of all points in the simplex having dyadic coordinates, and this enumeration can be translated via the n-dimensional Minkowski function to an enumeration of all rational points. In the course of establishing the above results, we introduce a family of {+1,-1}-valued functions, constituting an n-dimensional analogue of the classical Walsh functions.
DOI
10.4064/aa148-4-2
WOS
WOS:000292900100002
Archivio
http://hdl.handle.net/11390/696778
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-79960177536
Diritti
closed access
Soggetti
  • Kakutani-von Neumann ...

  • unique ergodicity

  • uniform distribution

  • Minkowski question ma...

Scopus© citazioni
0
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
0
Data di acquisizione
Mar 20, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback