Logo del repository
  1. Home
 
Opzioni

Kinetic Approach for Quantum Hydrodynamic Equations

TESSAROTTO, MASSIMO
•
M. ELLERO AND P. NICOLINI
2008
  • conference object

Abstract
A striking feature of standard quantum mechanics (SQM) is its analogy with classical fluid dynamics. In particular it is well known the Schrödinger equation can be viewed as describing a classical compressible and non-viscous fluid, described by two (quantum) fluid fields {,V}, to be identified with the quantum probability density and velocity field. This feature has suggested the construction of a phase-space hidden-variable description based on a suitable inverse kinetic theory (IKT; Tessarotto et al., 2007). The discovery of this approach has potentially important consequences since it permits to identify the classical dynamical system which advances in time the quantum fluid fields. This type of approach, however requires the identification of additional fluid fields. These can be generally identified with suitable directional fluid temperatures T_{QM,i} (for i=1,2,3), to be related to the expectation values of momentum fluctuations appearing in the Heisenberg inequalities. Nevertheless the definition given previously for them (Tessarotto et al., 2007) is non-unique. In this paper we intend to propose a criterion, based on the validity of a constant H-theorem, which provides an unique definition for the quantum temperatures.
DOI
10.1063/1.3076498
Archivio
http://hdl.handle.net/11368/1898674
http://proceedings.aip.org/proceedings
Diritti
metadata only access
Soggetti
  • Qunatum mechanic

  • Kinetic theory

Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback