Logo del repository
  1. Home
 
Opzioni

The KdV Hierarchy: Universality and a Painlevé Transcendent

Claeys, T
•
Grava, Tamara
2012
  • journal article

Periodico
INTERNATIONAL MATHEMATICS RESEARCH NOTICES
Abstract
We study the Cauchy problem for the Korteweg-de Vries (KdV) hierarchy in the small dispersion limit where ε→0. For negative analytic initial data with a single negative hump, we prove that for small times, the solution is approximated by the solution to the hyperbolic transport equation that corresponds to ε=0. Near the time of gradient catastrophe for the transport equation, we show that the solution to the KdV hierarchy is approximated by a particular Painlevé transcendent. This supports Dubrovins universality conjecture concerning the critical behavior of Hamiltonian perturbations of hyperbolic equations. We use the Riemann-Hilbert approach to prove our results. © 2011 The Author(s) 2011. Published by Oxford University Press. All rights reserved.
DOI
10.1093/imrn/rnr220
WOS
WOS:000310968200002
Archivio
http://hdl.handle.net/20.500.11767/13030
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84869194070
https://arxiv.org/abs/1101.2602
http://preprints.sissa.it/xmlui/handle/1963/6921
http://cdsads.u-strasbg.fr/abs/2011arXiv1101.2602C
Diritti
closed access
Soggetti
  • SMALL-DISPERSION LIMI...

  • KORTEWEG-DEVRIES EQUA...

  • RIEMANN-HILBERT PROBL...

  • STEEPEST DESCENT METH...

  • DE-VRIES EQUATION

  • EXPONENTIAL WEIGHTS

  • INVERSE SCATTERING

  • CRITICAL-BEHAVIOR

  • I EQUATION

  • ASYMPTOTICS

  • Settore MAT/07 - Fisi...

Scopus© citazioni
5
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
8
Data di acquisizione
Mar 22, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback