Logo del repository
  1. Home
 
Opzioni

A case study in vanishing viscosity

Bianchini, S.
•
Bressan, A.
2001
  • journal article

Periodico
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS
Abstract
We consider a special 2 x 2 viscous hyperbolic system of conservation laws of the form ut + A(u)ux = εuxx, where A(u) = Df(u) is the Jacobian of a flux function f. For initial data with small total variation, we prove that the solutions satisfy a uniform BV bound, independent of ε. Letting ε → 0, we show that solutions of the viscous system converge to the unique entropy weak solutions of the hyperbolic system ut + f(u)x = 0. Within the proof, we introduce two new Lyapunov functionals which control the interaction of viscous waves of the same family. This provides a first example where uniform BV bounds and convergence of vanishing viscosity solutions are obtained, for a system with a genuinely nonlinear field where shock and rarefaction curves do not coincide.
DOI
10.3934/dcds.2001.7.449
WOS
WOS:000167555000001
Archivio
http://hdl.handle.net/20.500.11767/16398
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-0035625301
Diritti
metadata only access
Soggetti
  • hyperbolic system of ...

  • bounded variation

  • vanishing viscosity a...

  • Settore MAT/05 - Anal...

Scopus© citazioni
13
Data di acquisizione
Jun 15, 2022
Vedi dettagli
Visualizzazioni
6
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback