Logo del repository
  1. Home
 
Opzioni

A Deep Learning Method for AGILE-GRID Gamma-Ray Burst Detection

Parmiggiani, N
•
Bulgarelli, A
•
Fioretti, V
altro
Macaluso, A
2021
  • journal article

Periodico
THE ASTROPHYSICAL JOURNAL
Abstract
The follow-up of external science alerts received from gamma-ray burst (GRB) and gravitational wave detectors is one of the AGILE Team's current major activities. The AGILE team developed an automated real-time analysis pipeline to analyze AGILE Gamma-Ray Imaging Detector (GRID) data to detect possible counterparts in the energy range 0.1-10 GeV. This work presents a new approach for detecting GRBs using a convolutional neural network (CNN) to classify the AGILE-GRID intensity maps by improving the GRB detection capability over the Li & Ma method, currently used by the AGILE team. The CNN is trained with large simulated data sets of intensity maps. The AGILE complex observing pattern due to the so-called "spinning mode" is studied to prepare data sets to test and evaluate the CNN. A GRB emission model is defined from the second Fermi-LAT GRB catalog and convoluted with the AGILE observing pattern. Different p-value distributions are calculated, evaluating, using the CNN, millions of background-only maps simulated by varying the background level. The CNN is then used on real data to analyze the AGILE-GRID data archive, searching for GRB detections using the trigger time and position taken from the Swift-BAT, Fermi-GBM, and Fermi-LAT GRB catalogs. From these catalogs, the CNN detects 21 GRBs with a significance of >= 3 sigma, while the Li & Ma method detects only two GRBs. The results shown in this work demonstrate that the CNN is more effective in detecting GRBs than the Li & Ma method in this context and can be implemented into the AGILE-GRID real-time analysis pipeline.
DOI
10.3847/1538-4357/abfa15
WOS
WOS:000662035300001
Archivio
http://hdl.handle.net/11368/3029221
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85108986240
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3029221/1/Parmiggiani_2021_ApJ_914_67.pdf
Soggetti
  • Gamma-ray astronomy

  • Gamma-ray burst

  • Convolutional neural ...

  • Neural networks

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback