Logo del repository
  1. Home
 
Opzioni

Properties of subentropy

N. Datta
•
R. Jozsa
•
T. Dorlas
•
BENATTI, FABIO
2014
  • journal article

Periodico
JOURNAL OF MATHEMATICAL PHYSICS
Abstract
Subentropy is an entropy-like quantity that arises in quantum information theory; for example, it provides a tight lower bound on the accessible information for pure state ensembles, dual to the von Neumann entropy upper bound in Holevo's theorem. Here we establish a series of properties of subentropy, paralleling the well-developed analogous theory for von Neumann entropy. Further, we show that subentropy is a lower bound for min-entropy. We introduce a notion of conditional subentropy and show that it can be used to provide an upper bound for the guessing probability of any classical-quantum state of two qubits; we conjecture that the bound applies also in higher dimensions. Finally, we give an operational interpretation of subentropy within classical information theory.
DOI
10.1063/1.4882935
WOS
WOS:000338634500016
Archivio
http://hdl.handle.net/11368/2828744
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84929012445
Diritti
metadata only access
Soggetti
  • quantum entropie

  • quantum information.

Web of Science© citazioni
11
Data di acquisizione
Mar 25, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback