Logo del repository
  1. Home
 
Opzioni

HERMES: An ultra-wide band X and gamma-ray transient monitor on board a nano-satellite constellation

Fuschino, F.
•
Campana, R.
•
Labanti, C.
altro
Zorzi, N.
2018
  • journal article

Periodico
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT
Abstract
The High Energy Modular Ensemble of Satellites (HERMES) project is aimed to realize a modular X/gamma-ray monitor for transient events, to be placed on-board of a nano-satellite bus (e.g. CubeSat). This expandable platform will achieve a significant impact on Gamma Ray Burst (GRB) science and on the detection of Gravitational Wave (GW) electromagnetic counterparts: the recent LIGO/VIRGO discoveries demonstrated that the high-energy transient sky is still a field of extreme interest. The very complex temporal variability of GRBs (experimentally verified up to the millisecond scale) combined with the spatial and temporal coincidence between GWs and their electromagnetic counterparts suggest that upcoming instruments require sub-microsecond time resolution combined with a transient localization accuracy lower than a degree. The current phase of the ongoing HERMES project is focused on the realization of a technological pathfinder with a small network (3 units) of nano-satellites to be launched in mid 2020. We will show the potential and prospects for short and medium-term development of the project, demonstrating the disrupting possibilities for scientific investigations provided by the innovative concept of a new “modular astronomy” with nano-satellites (e.g. low developing costs, very short realization time). Finally, we will illustrate the characteristics of the HERMES Technological Pathfinder project, demonstrating how the scientific goals discussed are actually already reachable with the first nano-satellites of this constellation. The detector architecture will be described in detail, showing that the new generation of scintillators (e.g. GAGG:Ce) coupled with very performing Silicon Drift Detectors (SDD) and low noise Front-End-Electronics (FEE) are able to extend down to few keV the sensitivity band of the detector. The technical solutions for FEE, Back-End-Electronics (BEE) and Data Handling will be also described.
DOI
10.1016/j.nima.2018.11.072
WOS
WOS:000471828100073
Archivio
http://hdl.handle.net/11390/1142297
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85057843329
NIMA 61613
Diritti
open access
Soggetti
  • Nanosatellites Gamma...

Scopus© citazioni
27
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
34
Data di acquisizione
Mar 16, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback