Logo del repository
  1. Home
 
Opzioni

Lecture notes on differential calculus on RCD spaces

Gigli, Nicola
2018
  • journal article

Periodico
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES
Abstract
These notes are intended to be an invitation to differential calculus on RCD spaces. We start by introducing the concept of an “L 2 -normed L ∞ -module” and show how it can be used to develop a first-order (Sobolev) differential calculus on general metric measure spaces. In the second part of the manuscript we see how, on spaces with Ricci curvature bounded from below, a second-order calculus can also be built: objects like the Hessian, covariant and exterior derivatives and Ricci curvature are all well defined and have many of the properties they have in the smooth category.
DOI
10.4171/PRIMS/54-4-4
WOS
WOS:000447745000004
Archivio
http://hdl.handle.net/20.500.11767/111336
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85065034009
https://www.ems-ph.org/journals/show_abstract.php?issn=0034-5318&vol=54&iss=4&rank=4
Diritti
open access
Soggetti
  • Differential calculu

  • Metric measure space

  • RCD space

  • Ricci curvature

  • Settore MAT/05 - Anal...

Scopus© citazioni
12
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
23
Data di acquisizione
Mar 21, 2024
Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback