Logo del repository
  1. Home
 
Opzioni

A machine-learning approach for the reconstruction of ground shaking fields in real-time

Simone Francesco Fornasari
•
Giovanni Costa
•
Veronica Pazzi
2022
  • journal article

Periodico
GEOPHYSICAL RESEARCH ABSTRACTS
DOI
10.5194/egusphere-egu22-2673
Archivio
https://hdl.handle.net/11368/3026852
https://doi.org/10.5194/egusphere-egu22-2673
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3026852/1/2022 Fornasari et al - EGU.pdf
Soggetti
  • machine learning

  • RAN

  • ground shaking field

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback