Logo del repository
  1. Home
 
Opzioni

Fully inert subgroups of divisible Abelian groups

DIKRANJAN, Dikran
•
GIORDANO BRUNO, Anna
•
Salce, Luigi
•
Virili, Simone
2013
  • journal article

Periodico
JOURNAL OF GROUP THEORY
Abstract
A subgroup H of an Abelian group G is said to be fully inert if the quotient (H + phi(H)/H is finite for every endomorphism phi of G. Clearly, this is a common generalization of the notions of fully invariant, finite and finite-index subgroups. We investigate the fully inert subgroups of divisible Abelian groups, and in particular, those Abelian groups that are fully inert in their divisible hull, called inert groups. We prove that the inert torsion-free groups coincide with the completely decomposable homogeneous groups of finite rank and we give a complete description of the inert groups in the general case. This yields a characterization of the fully inert subgroups of divisible Abelian groups.
DOI
10.1515/jgt-2013-0014
WOS
WOS:000326576200007
Archivio
http://hdl.handle.net/11390/892153
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84888600019
http://www.degruyter.com/view/j/jgt.2013.16.issue-6/jgt-2013-0014/jgt-2013-0014.xml
Diritti
open access
Soggetti
  • Abelian group

  • fully inert subgroup

  • divisible groups.

Scopus© citazioni
25
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
27
Data di acquisizione
Mar 26, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback