Logo del repository
  1. Home
 
Opzioni

Existence and Nonexistence of Global Solutions of Higher Order Parabolic Equations with Slow Decay Initial Data

MITIDIERI, ENZO
•
CARISTI, GABRIELLA
2003
  • journal article

Periodico
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Abstract
In this paper we consider the Cauchy problem ∂tu+(−∆)mu=|u|p, x∈RN, t>0, (1) u(x,0)=u0(x), x∈RN, (2) wheremisanintegergreaterorequalto1,p>1,u0 ∈X≡L1(RN)∩L∞(RN). From the general theory of evolution equations, there exists a unique bounded solution of (1)–(2) u(x,t)=u(x,t;u0), defined on a maximal time interval [0,T∗), where T∗ = T∗(u0)∈(0,∞]. If T∗(u0)=∞, we say that u(x,t;u0) is a global solution of (1)–(2). On the other hand, if T ∗(u0) < ∞, we say that the corresponding solution does not exist globally or that it blows up in finite time. Recent results by Egorov et al. [3] show that, if 1<pp∗(m)=1+2m/N,thenT∗(u0)<∞foranyu0 ∈L1loc(RN)\{0}suchthat RN u0(x)dx 0.
Archivio
http://hdl.handle.net/11368/1958527
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-0037507558
Diritti
metadata only access
Visualizzazioni
5
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback