Logo del repository
  1. Home
 
Opzioni

Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data

Angkana Ruland
•
Eva Sincich
2019
  • journal article

Periodico
INVERSE PROBLEMS AND IMAGING
Abstract
In this note we discuss the conditional stability issue for the finite dimensional Calderón problem for the fractional Schrödinger equation with a finite number of measurements. More precisely, we assume that the unknown potential $ q in L^{infty}(Omega) $ in the equation $ ((- Delta)^s+ q)u = 0 mbox{ in } Omegasubset mathbb{R}^n $ satisfies the a priori assumption that it is contained in a finite dimensional subspace of $ L^{infty}(Omega) $. Under this condition we prove Lipschitz stability estimates for the fractional Calderón problem by means of finitely many Cauchy data depending on $ q $. We allow for the possibility of zero being a Dirichlet eigenvalue of the associated fractional Schrödinger equation. Our result relies on the strong Runge approximation property of the fractional Schrödinger equation.
DOI
10.3934/ipi.2019046
WOS
WOS:000476479100006
Archivio
http://hdl.handle.net/11368/2946779
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85073270144
Diritti
closed access
license:copyright editore
FVG url
https://arts.units.it/request-item?handle=11368/2946779
Soggetti
  • Lipschitz stability

  • finite dimensional fr...

  • finite Cauchy data

Scopus© citazioni
10
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
17
Data di acquisizione
Mar 2, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback