Logo del repository
  1. Home
 
Opzioni

Speed limit of the insulator–metal transition in magnetite

S. de Jong
•
R. Kukreja
•
C. Trabant
altro
H. A. Dürr
2013
  • journal article

Periodico
NATURE MATERIALS
Abstract
As the oldest known magnetic material, magnetite (Fe3O4) has fascinated mankind for millennia. As the first oxide in which a relationship between electrical conductivity and fluctuating/localized electronic order was shown1, magnetite represents a model system for understanding correlated oxides in general. Nevertheless, the exact mechanism of the insulator–metal, or Verwey, transition has long remained inaccessible2, 3, 4, 5, 6, 7, 8. Recently, three-Fe-site lattice distortions called trimerons were identified as the characteristic building blocks of the low-temperature insulating electronically ordered phase9. Here we investigate the Verwey transition with pump–probe X-ray diffraction and optical reflectivity techniques, and show how trimerons become mobile across the insulator–metal transition. We find this to be a two-step process. After an initial 300 fs destruction of individual trimerons, phase separation occurs on a 1.5±0.2 ps timescale to yield residual insulating and metallic regions. This work establishes the speed limit for switching in future oxide electronics10.
DOI
10.1038/NMAT3718
WOS
WOS:000324736000012
Archivio
http://hdl.handle.net/11368/2707483
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84884588756
Diritti
metadata only access
Soggetti
  • Magnetite

  • Verwey transition

Web of Science© citazioni
113
Data di acquisizione
Mar 27, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback