CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
Abstract
We study the approximation of finite-dimensional rate-independent quasistatic systems, via a vanishing-inertia asymptotic analysis of dynamic evolutions. We prove the uniform convergence of dynamic solutions to a rate-independent one, employing the variational concept of energetic solution. Motivated by applications in soft locomotion, we allow time-dependence of the dissipation potential, and translation invariance of the potential energy.