Further insight into the dissociative adsorption of NH3 on Si(001) has been obtained using a combined computational and experimental approach. A novel route leading to the dissociation of the chemisorbed NH3 is proposed, based on H-bonding interactions between the gas phase and the chemisorbed NH3 molecules. Our model, complemented by synchrotron radiation photoelectron spectroscopy measurements, demonstrates that the low temperature dissociation of molecular chemisorbed NH3 is driven by the continuous flux of ammonia molecules from the gas phase.