Logo del repository
  1. Home
 
Opzioni

Second-order ordinary differential equations with indefinite weight: the Neumann boundary value problem

A. Boscaggin
•
ZANOLIN, Fabio
2015
  • journal article

Periodico
ANNALI DI MATEMATICA PURA ED APPLICATA
Abstract
We study the second-order nonlinear differential equation u′′+a(t)g(u)=0 , where g is a continuously differentiable function of constant sign defined on an open interval I⊆R and a(t) is a sign-changing weight function. We look for solutions u(t) of the differential equation such that u(t)∈I, satisfying the Neumann boundary conditions. Special examples, considered in our model, are the equations with singularity, for I=R+0 and g(u)∼−u−σ, as well as the case of exponential nonlinearities, for I=R and g(u)∼exp(u) . The proofs are obtained by passing to an equivalent equation of the form x′′=f(x)(x′)2+a(t) .
DOI
10.1007/s10231-013-0384-0
WOS
WOS:000351388800008
Archivio
http://hdl.handle.net/11390/1040388
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84936928644
http://springer.libdl.ir/article/10.1007/s10231-013-0384-0
Diritti
open access
Soggetti
  • Boundary value proble...

Scopus© citazioni
29
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
26
Data di acquisizione
Mar 18, 2024
Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback