Logo del repository
  1. Home
 
Opzioni

Feed-Forward Neural Networks: a Geometrical Perspective

BUDINICH, MARCO
•
MILOTTI, EDOARDO
1991
  • journal article

Periodico
JOURNAL OF PHYSICS. A, MATHEMATICAL AND GENERAL
Abstract
The convex hull of any subset of vertices of an n-dimensional hypercube contains no other vertex of the hypercube. This result permits the application of some theorems of n-dimensional geometry to digital feed-forward neural networks. Also, the construction of the convex hull is proposed as an alternative to more traditional learning algorithms. Some preliminary simulation results are reported.
DOI
10.1088/0305-4470/24/4/020
WOS
WOS:A1991FA04700020
SCOPUS
2-s2.0-36149031753
Archivio
http://hdl.handle.net/11368/2558124
https://iopscience.iop.org/article/10.1088/0305-4470/24/4/020
Diritti
metadata only access
Soggetti
  • neural networks

  • feed-forward

  • convex hull

Web of Science© citazioni
1
Data di acquisizione
Mar 17, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback