Logo del repository
  1. Home
 
Opzioni

Laser Speckle Contrast Analysis: Functional Evaluation of Microvascular Damage in Connective Tissue Diseases. Is There Evidence of Correlations With Organ Involvement, Such as Pulmonary Damage?

Barbara Ruaro
•
Cosimo Bruni
•
Barbara Wade
altro
Francesco Salton
2021
  • journal article

Periodico
FRONTIERS IN PHYSIOLOGY
Abstract
Laser speckle contrast analysis (LASCA) is a non-contact technique able to quantify peripheral blood perfusion (PBP) over large skin areas. LASCA has been used to study hand PBP in several clinical conditions. These include systemic sclerosis (SSc) and systemic lupus erythematosus (SLE) and LASCA showed that PBP was significantly lower in these conditions than in healthy subjects (HS). Moreover, it has been demonstrated that LASCA is a safe technique also able to monitor digital ulcer perfusion and their evolution in SSc patients, during systemic and local treatment. The use of LASCA, coupled with reactivity tests is commonplace in the field of microvascular function research. Post-occlusive hyperemia reactivity (POHR) and local thermal hyperemia, associated with laser techniques are reliable tests in the evaluation of perfusion in SSc patients. Other studies used laser speckled techniques, together with acetylcholine and sodium nitroprusside iontophoresis, as specific tests of endothelium function. In conclusion, LASCA is a safe, non-contact reliable instrument for the quantification of PBP at skin level and can also be associated with reactivity tests to monitor disease progression and response to treatment in different connective tissue diseases.
DOI
10.3389/fphys.2021.710298
WOS
WOS:000716704300001
Archivio
http://hdl.handle.net/11368/2996859
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85117609907
https://www.frontiersin.org/articles/10.3389/fphys.2021.710298/full
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/2996859/1/Ruaro Laser microvascular.pdf
Soggetti
  • systemic sclerosi

  • systemic lupus erythe...

  • peripheral microcircu...

  • laser speckle techniq...

  • blood perfusion

  • digital ulcers

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback