Logo del repository
  1. Home
 
Opzioni

Toward empirical force fields that match experimental observables

Froehlking, Thorben
•
Bernetti, Mattia
•
Calonaci, Nicola
•
Bussi, Giovanni
2020
  • journal article

Periodico
THE JOURNAL OF CHEMICAL PHYSICS
Abstract
Biomolecular force fields have been traditionally derived based on a mixture of reference quantum chemistry data and experimental information obtained on small fragments. However, the possibility to run extensive molecular dynamics simulations on larger systems achieving ergodic sampling is paving the way to directly using such simulations along with solution experiments obtained on macromolecular systems. Recently, a number of methods have been introduced to automatize this approach. Here, we review these methods, highlight their relationship with machine learning methods, and discuss the open challenges in the field.
DOI
10.1063/5.0011346
WOS
WOS:000542991000001
Archivio
http://hdl.handle.net/20.500.11767/112969
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85086934309
https://aip.scitation.org/doi/10.1063/5.0011346
Diritti
open access
license:tutti i diritti riservati
license:tutti i diritti riservati
Scopus© citazioni
13
Data di acquisizione
Jun 15, 2022
Vedi dettagli
Web of Science© citazioni
42
Data di acquisizione
Mar 26, 2024
Visualizzazioni
5
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback